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ABSTRACT

The modified hypernetted chain theory (MHNC) for density profiles

of fluids in contact with a hard, smooth surface is found to posess a

remarkably simple and interesting property: The accuracy of the MHNC and

the universality of the bridge functions for the density profiles can

be tested without resort to any detailed solution of the integral

equations.It is given by the degree of universality of the bulk bridge

parameter (e.g. 9 for the Percus-Yevick hard-sphere bridge function)

when expressed in terms of the second partial derivative of the free

energy with respect to the density

F --?P/2 )f(?,T)/ Zy I r

The function 9 (F) as obtained from MHNC calculations for bulk

simple fluids is found to be remarkably independent of the pair

potential.As an example for the accuracy of the resulting method, the

one component plasma near a hard wall is discussed.



The pair correlation functions and the equation of state of bulk

are given with a high degree of accuracy by the MHNC,which is based on

the universality of the short ranged part of the bridge functions [1].

However, a similarly accurate theory for the inhmogeneous fluid is not

yet available.In particular this is the case of the interface of a ionic

solution near a charged,smooth hard wall [2].This is a simple,highly

idealized model of the interface of a ionic fluid and a charged solid

but it has been extensively used in electrochemistry [3].Recentlyas

part of an extensive study of the one component plasma (OCP) [4],the

interfacial properties of the OCP and hard surfaces [ -8] were studied.

k The comparison between the accuracy of the same approximation in

the bulk or at the interface shows that in general,a good approximation

for the bulk phase is not as succesful for the interface.For example,

the HNC is an excellent theory for the bulk electrolytes and OCP [1,4]

However it is a much poorer theory for the charged interface.The reason

is that it underestimates the density oscillations caused by the

excluded volume effects.The error produced by this underestimation is

much more serious for the flat interface case.The inclusion of bridgeN
diagrams corrects in part this defficiency, and should yield a much more

accurate theory for the interface.

As a first step in the systematic improvement of the flat wall HNC
similar to what has been done in the bulk case [I], the

present paper provides a proof of the universality of the short ranged

part of the bridge functions for the density profiles near a flat,

smooth interface.The analysis of the MHNC scheme,and the availability of

MHNC results for the bulk OCP enables us to establish this result

without having to particularize to any specific density profile in

"- "--



detail.For the restricted (dielectric continuum) primiti,:e model of

ionic solutions a similar analysis is also possible.

A fluid in contact with an impenetrable wall can be considered [91

as a limiting case of a mixture in which one of the components (which we

label w) grows in size but dwindles in concentration, so that the

properties of the bulk phase of the fluid remain unchanged.Let R be the

hard core radius of the w particle (the "wall"), with density Then

the limit is [9,10]

3
' -; -o and R ->O.

We use the Ornstein Zernike (OZ) equation as our starting point.We

show that in the planar limit the bridge functions of the MHNC

approximation can be determined from a universal function.The criterion

to determine the parameters of this function are given in section II.

The remarkable (but perhaps not unexpected) fact is that nearly all the

*- bridge function parameters are already determined by the solution of the

bulk MHNC equations.The only free parameter turns out to be a shift

parameter, X ,which determines the position of the wall in the reference

*system relative to that of the system under consideration. This special

*property of the bridge functions,when analyzed in the context of the sum

rules for the density profiles (discussed in section III), leads to a

remarkably simple and interesting result :The accuracy of the MHNC

theory and the universality of the bridge functions for the density

profiles,can be tested without having to solve the equations.It is given

by the degree of universality ( i.e. the independence of the pair

potential) of the bulk bridge parameters (for example, 5 of the

Percus-Yevick hard sphere functions), when expressed in terms of the

second partial derivative of the excess free energy with respect to 9.
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be very accurate.(see figure l).As an example of the resulting method

and its accuracy we consider in section V the density profile of the OCP

near a flat wall.The Percus Yevick hard sphere bridge functions for the

-, density profiles are briefly discussed in section VI while some

implications of the present work are mentioned in the concluding section

VII.
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II-Ornstein-Zernike Equation and MHNC Closures in the Planar Limit

Consider a mixture of particles labelled 1,2,..m,w with total

density

N./V-N/V'

temperature Z-(k T) ,and mole fractions x.-N /N ,x -N /N.In the limit

x -.0 the OZ equation decouples into two parts [9]:the bulk part

h. (r) +P f dr'h,( I -r' I )c (r') (2.1)

and the wall part ,

h (r) (r) +\ xL drh (Ir-r'lc (r) (2.2)
•j " %O: ~ F .l, , . , . ~ ,( ' 2 2

where h.(r) is the total correlation function, and c,(r) is the direct"i - "1 ~

correlation function for the bulk fluid. h,(r) and c (r) are the

correlations involving the w particle.Consider now the planar limit: let

r-R +x (eventually R --'oo) and denote

h (r) -;;h (r)

c (r) ->c.(r)

Then [91

h .(x)-c *(x) x ~x2fi' (dt h (t) (ds sc (S) (2.2')

where we are implicitly using hard core exclusion conditions for the

wall

g.(x)-h(x) +1-0, x<R (2.3)

% " - o- .- .% - ,. .- .• .- . •.. - . l. * .**'- V q,% .



where R-is the radius of the hard core or i.

The fluid now occupies the right half space,x>O,and x g (x) gives

the probability of finding the center of particle i at a distance x from

the surface of the wall. The function g.(x) rppresents, therefore, the

density profile.When the wall is charged and the system has ions, then

(2.2') has to be modified to avoid divergencies produced by the Coulomb

N potential [11]

00
00

ds sc .s s sc (s)+ ZQ.Q(Ix-tl+x+t) (2.2")

I01 Ix-ti

where

sc (s) - sc (s)+ IQQ /s (2.4

The charged system must satisfy the bulk electroneutrality

condition

x.Q.-O (2.5)

' and the wall electroneutrality condition

JO XQ Sdx g.(x) - -E*/4TT (2.6)

"Z

where E0is the electric field at the surface of the wall.

The exact diagrammatic expansion of the fluid pair correlation

functions supplements the OZ equation with the closures [1,4]

log (l+h.(r))--[94,(r)+B (r)]+fh (r)-c (r)]

i,j-l ...m,w (2.7)

where #.(r) are the pair interaction potentials, and the bridge

functions B.(r) are given in terms of diagrams containig h.(r) bonds.

d: .
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The hypernetzed chain approximation HNC is obtained by setting B.r =0.

Note also that (2.7) is an HNC for the effective potential

(r)+B..(r)/S.Presently, the MIINC is the most accurate theory available

for the pair correlation functions of the flu..i[l,12-16].The MHNC scheme

is based on the short range universality of the bridge functions:In

practice, one considers a reference system (superscript 'o') of hard

spheres of radii R*,R°, with the same relative concentrations xx,

temperature S and density f as the original system.The basic MHNC

approximation is

B (r) -8 (r,R°,..,R°,R ° ).  (2.8)

where the reference hard core radii R*,R ° are adjustable parameters to

be determined by imposing consistency criteria.In particular, the

following MHNC 'virial-energy' consistency requirement can be imposed

locally [13-16] (without having to consider different temperatures or

densities)as a set of m+l equations for the m+l unknown radii R°(S,o):

- x.x.Jir [ g.(r) -g*(r)] )B(r)/6R -0

-VA, k-l,..m,w (2.9)

The HNC,with B..-O, is the member of the lowest order of this class of

approximations satisfying 'virial-energy'consistency [13,14,171.

Detailed results [1,12-16,18-21] show that the MHNC reproduces the

computer simulation results for a large variety of fluids within the

statistical error of the simulations.The results for multicomponent

classical plasmas are nearly as accurate [12] ,while somewhat less

accurate results are obtained for electroytes and molten salts [20].

In any event, the MHNC results in a significant improvement of the HNC

theory.The accuracy of the local MHNC theory based on the universality



N,

perturbation theory for the equation of state, were recently studied in

detail [13-14].

The interesting feature of the planar limit is that the closures

"- (2.7) decouple from the bulk part in the same way as the OZ equation:

log (1+hC(r))--[90.(r)+B.(r)]+[h (r)-c (r)]

' i,j=l . m (2.10)

6 and for the wall part

log (l+hj(x))=- [ .(x)+B.(x)]+[h.(x)-ci(x)]

i- i . .m (2.11)

where ,(r)-> .(x) ,B (r) -->B-(x).:.:.,
When employing the MHNC scheme for the bulk part,eqs. (2.8,9)

remain unchanged, except that the w component is not taken into

account.In other words,we get the usual MHNC bridge functions for the

bulk phase with the m bridge parameters R . (9,r).Taking the planar limit

in the reference system (using now r=R +z-R,+X+x), we obtain the

reference bridge functions

ig (r) g' (z) =g(x+,R° (I ' ,) .

B°(r)->B*(z) -B*(x+ ,R° (9f) .... R ° (f9,r)) (2.12)
t~' ,

so that the (m+l)th equation in (2.9) becomes

x x g.()- =0

i-l,..m (2.13)

from which we find the remaining bridge parameter (the shift parameter)

* A A -~ * . . . . . . * -. ~ *. . . . . .



-lira (R ° - R ° )

R ,R ->oo
Vr vd

(2.14)

In other words,the bulk part of the MHNC scheme determines all the

radii R* (9,p) and the planar reference functions g*(z) and B*(z). The

only remaining free parameter of the MHNC is the shiftX, which should

be the same for all components of the mixture.This special feature has

significant consequences to be discussed below.

Finally, it should be noted that although it is presently

impossible to calculate ,the non-additive diameter case gives more

flexibility to the scheme.In that case, instead of (2.13), we get the

system of equations for the m shift parameters .

fdx g.(x) -g*(x+%) aB! (x+) .) / -0

i-l,..m (2.15)

b
w

a



1L1-MHNC Equations for zhe Density Profiles and Bridge F:'nctions:Su-n

Rules

Combining (2.2") and (2.11) we arrive at the following equations

for the density profiles:

SR se
log[l+ h-(x)]- 21 t h (t)(ds ScW(S) -Iq (x) - 4(x)

-PZ jx-t

- b.(x) x>R.

(3.1)

(1+ h.(x)]-O, x<R

where I(x) is the electrostatic potential in the half space x>.O

'(x)-4f' Jdt (x-t) h (3.2)

which satisfies the boundary conditions

I --E0  ;Y(x->oo)-O (3.3)

t.(x) is the non-electrostatic ,non-hard core part of the interaction

between particle i and the wall.Eqs (3.1-3) also apply to the situation

when the system is immersed in a uniform neutralizing background of

charge density pb : It this case, however, (2.5) and (2.6) have to be

modified

f I Q --fb (3.4)

P 7x. Qfdx h (x) E, ~/41 T (3.5)
'o'

.. ~ ~~ V *-0 ~2C ~,~~ ~~~~~~ ~ ~ ~~ ~ ~~ -" e , . e- -. _- .' .' ,..j ... ''%-'. ''. "•"2 -. '-"%L. - ''"" .



When the bridge functions of a reference system are employed, then using

the property

bBo(x+>, )/6 -B(x+N )/bx

we arrive at the following condition for the shift parameter,:

. x fdx [ g.(x) -g0 (x+X),] 6B(x+\ )/bx -0

i-l ..m (3.6 )

.It should be noted that the HNC approximation for the density

profiles (i.e. B.(x)-O without any additional statement about the bulk

B..(r)'s) is obtained also from Wertheim's equation (22] : For a one

component system

.9 log p(r) -. 7, v,(r) +I dr'crr') If[(r')-p] (3.7)

under the assumption

,%

Sc(r,r')- c (iLr-r:J) (3.8)

vlbh.

Employing the method of Carnie et al [23], we derive from (3.1) and

(3.5) the following sum rule

x.g.(R. +) (X Q) I(x-O)- 9E,/sf , +1/2I (/)t

+. .gf..-.... ....(x) .B..x)/bx (3.9)
+~xfd g.(x



If the exact bulk direct correlation functions (dcf) and the exact

bridge functions BZ(x) are employed, then eq.(3.9) is exact.It should

be compared to the following exact relation that does not involve the

bridge functions explicitly [2,24,251

xig (R) +9 (x-Q. ) j(x-O)- 1 +9Pf '/8-

(3.10)

comparing these equations we find the following bridge function sum rule

for the density profile

xjdx g.(x) " BZ(x)/6x- A(P/p) -l/2[l+9('P/bp)] uL

(3.11)

,m' When approximate bridge functions e.g Bj(x) and /or approximate

bulk dcf (c (r)) are used, thertq. (3.9) is still valid provided that

the bulk inverse compressibility

is taken from the compressibility equation of state which corresponds to

the bulk dcf's that are employed.When B,(x)-O then we recover the more

familiar HNC sum rule [23].In the case of the mean spherical

approximation (MSA) the closure for the dcf is

c (x) -- +.(x) , x;R i  (3.12)

for which we obtain from (2.11)

"-

L.Zp.-L



g (x) '6B-(x)/° l 'g-(x) g-(x)/ x --gq(x)/bx (3.13)

and from (3.9)

1/ x g(R-) +9 (x Q.) j(x-O)- SE,,/s811p +l/2[9( P/ao L

. & 
)r 

I%

+Zx-fdx g.(x) f3(x)/6x

(3.14)

Despite the extensive work on the MSA for density profiles

[2,11,26], this general MSA.sum rule has not, to our knowledge been

published in the literature.This MSA sum rule, as well as the general

sum rule (3.9), are very useful in understanding the results of the

different approximations.

Returning to the MHNC approximation with the hard sphere reference

bridge functions B*(x+X), we write, from (3.6)

C al (3 .15)

~Using (3.11) applied to the reference system, and also (3.9), we

obtain the following MHNC result for the density profiles:

N. %



+xg.(R ) +1% x.Q.) j(x=)= ZE/81T
L

+-xfdx g.(x) 9 )/(x)/x +I/2[l+A(6P/B p ] +[S(P/p)]°

-I/2[l+9(dP/@p ] Z.L f x g*(x) 9 )BS(x)/3x

,4. (3.16)

where , for all practical purposes we may ignore the last term (i.e.>4R-

of the right hand side [27].

Comparing (3.16) with (3.9) and (3.10), we find that in all

cases when the bulk dcf's and equation of state are given correctly by

the MHNC (as it is the case for simple, one component fluids),a criteria

for the performance of the accuracy of the MHNC for the density profile

of the inhomogeneous case is provided by the validity of the following

bulk relation (the 'bridge sum rule')

[(P/)-/2[t+( P/a)] - [(p) o  /21+(P/ T °

(3.17)

Denoting by f(p,T)-&F /N the excess free energy per particle

then we may re-write (3.17) as

-1/2 f( ,r)/af 4 -- fL/2 f°(F,r)/a Z[

(3.18)

Thus, an optimized MHNC map (i.e.R°(9,p)) of the system on the

reference system, such that the optimized bridge parameters obtained



from (2.9) reproduce accuratelv the structure functions of the system,

will perform as well for the density profiles, provided that the

optimized reference bulk system and the given bulk system have the same

second partial density derivatives.This resul-i is an unexpected type of

correlation between the bulk bridge parameters.

.k
4, ,
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IV-Test of the Bridge Sum Rule:Universaiitv of the Wall-Particle Bridge

Functions

For bulk fluids in three dimensions the exact bridge functions are

, not known:However the universality hypothesis can be tested very

effectively:The bridge functions obtained from the Percus-Yevick theory

for hard spheres reproduces the structural correlation functions

obtained by computer simulation of a large variety of cases, with quite

disparate interaction potentials, from hard spheres to charged plasmas

[l,12-21].The corresponding MHNC calculations employ the PY-hard sphere

bridge functions with a single parameter 9 (which is the hard sphere

packing fraction in the PY approximation).As a result, we have available

the values of 9 (?,T) for the set of potentials for which detailed MHNC

calculations have been performed.These include the hard spheres,

Lennard-Jones (LJ 12-6) ,r ,r and r (the OCP) potentials[l,6,18,19].

As already discussed in detail elsewhere [13] when the bridge parameter

is expresed in terms of the entropy S-S4/Nk ,then 9(S) forms a

universal line, independent of the potential (fig I of ref. 13).This

represents a graphic demonstration of the accuracy of the variational

thermodynamic perturbation theory.The result (3.17) has not been

anticipated.

The test of the validity of (3.17) and of the universality of the

bridge functions for the density profiles can be performed together by

examining the universality of the bulk bridge parameter n ,when

expressed in terms of

F-[(/)]i2l.(F .



for different potentials. It is to be emphasized that this broad

interpretation of the universality rn (F) requires only that a set of

bridge functions from which this relation is obtained does accurately

reproduce the bulk pair correlation functions.In figure 1 we plot the

results for n,(F) for different potentials in the entire fluid range,

nC<0.45.Indeed, the universality is satisfied to a ramarkable degree.

Better, in fact than that of rn(S).The hard sphere line in figure I is

actually obtained from simple analytic expressions. For hard

spheres,using the packing fraction -/6 pd (where d is the hard

V sphere diameter), we use the Carnahan-Starling equation of state [29] to

get

F O' , -[5S -2]/[l-3 1 (4.2)

This expression provides also an excellent fit for the MHNC

calculations of Tsai [18] ,who obtained the representatiorjfor the

parameter rL

n,- (0.982913-0.022713 +0.02449 ) (4.3)

The universal behaviour of r(S) and n(F) for simple one component

4fluids suggests a new interesting possibility to correlate the bulk

properties of simple classical fluids using a relation of the type

S(F)- universal function (4.4)

1' %



V-An Example:The one Component Plasma in Contact with an Impenetrable

Wall

Monte Carlo (MC) simulations of the surfdce properties of the OCP

were performed by Badiali et al [5] .These authors present the results

for an near an impenetrable hard wall for five values of the plasma

coupling parameter

0 -9Q /ars-l, 10,20, 30, 70 a -[3/4fr]

In addition to the MC result they also present results for the HNC

closure for the density profile using the MC results for the bulk dcf,

and results for the MSA for the density profile [26] using the soft MSA

[30,17] bulk dcf's.We will refer to those results as MC/MC,HNC/MC and

MSA/SMSA.

For the case at hand, (x)-O,E.-O,R-O, and in the notations of ref

,: . [51], ZQU(O)--Lze .Denoting

4 1 j- 9zelj -g(O) in general and AJ- Aze j -g.(0)/2 for the

MSA,we obtain the following results for the different theories

1 -/ 2 [1+9(8P/dp) ]tV for HNC/MC

1 -/2[I+9(bP/p)T for MSA/SMSA

.'-. -i/2 [+(6P/8) T ] for HNC/HNC

1> -&(P/ ) I for MC/MC

- -&(P/p) I -(F-F ° ) for MHNC/MHNC

(5.1)

4'.!'



Recall, that, essentially, MH-NC/iHN(,_M.NC/MC and that the OCP results

give n,(l'-1)-0.l,r (r -70)-0.38 (see fig.l in ref 6 ,Using fig.l with

6 OF-F-F° given in relation to the hard sphere line we find

for 1- 1 10 20 30 70

we finddF - 0 0.20, 0.25 0.15 -0.25 respectively.Recall also

that for the bulk,HNC-MC for r -l, while [17,31], HNC-SMSA for r>10.

The reults of the different theories for a Ij are given in table l.Note

the high accuracy obtained by the MHNC/MHNC when compared to the MC/MC.

Note also that without succeeding to reproduce the pronounced structures

of the MC/MC density profilesall the theories of the type X/HNC or

X/SMSA with X-HNC or MSA will give, for large plasma parameter i' , much

better results for the total potential drop ej than the corresponding

X/MC.This is a negative feedback artifact of the thermodynamic

inconsistency of the HNC and SMSA results for the bulk OCP, by which

r they give

1/29 (P/d) r- 0.3 lVwich happens to agree with 9 (P/p) - 0.3 r"

This situation is very similar to what happens in the bulk OCP where

both the HNC and the SMSA give very good results for the potential

energy despite (<-->Ai ) the fact that the corresponding pair correlation

functions are far from reproducing the MC results. The MHNC/MHNC results

satisfy a stringent moment test, i.e.(3.6) which as in the bulk case

also assures the validityof the- (4-- potential energy) test in table

1.
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VI-Construction of the Bridge Functions for the Density Profiles

Despite the fact that we have used the PY hard sphere

representation for the bulk bridge functions in constructing the MHNC

scheme for the inhomogeneous problem,the universality criteria for the

bridge functions for the density profiles in the inhomogeneous fluid and

eq. (3.17) are valid in all cases. The universality of n(F) tells us

that there is a similarly universal representation of the bridge

functions for the density profiles, but it does not necessarily imply

that it can be obtained from the PY hard sphere density profiles.Yet,

the general behaviour of the universal bridge functions for the density

-* profiles in the range z>O is similar to that of the bulk fluid and may

. be inferred from the solution of the PY equation for hard spheres near a

* wall, which is, quite naturally, a good starting point.

The solution of the PY equation for a one component hard sphere

system of bulk packing fraction n, near a hard wall yields [9]

-(l+2%) /(I-Q) for z<-l/2

c(z)- <[-(1+2N +6r0(+r/2)(l+2rL)(z+i/2) -2n(l+2n) (z+3/4) ]/(l-ro

for -1/2<z<1/2

0 for z>1/2

(6.1)

where z is is the distance to the wall and the hard core diameter d-2R

is the unit of length.g(z) can be calculated from the planar OZ as

described in [9]. By a method similar to that of the bulk case [l],the

bridge functions for the density profiles are given by

. . . . ** -5-.- -- 5'-.' %



Wr ~ Is' W-".-W- T-W'9'W W -iKW g V a - .i - a

-c(z)--lfl-c(z)l ]z<1/2

)B
""B (z)=i

g(z)-l-ln[g(z)] ,z>l/2 (6.2)

These functions are continuous,since as it is well known

c(1/ 2)--g(1/2 )--(l+ 2R)/(l-rt) (6.3)

in agreement with (3.14) for hard spheres

1/2 g (l/2)-l/29( P/8f)yT --l/2c(O)I (6.4)

The density profiles exhibit more pronounced structure than the

bulk pair correlation functions,but the general shape of B (z) for z>O,

. is very similar to that of the bulk B (r) for r>O.Note however, that

*negative values of g(z) occur for r>0. 45, while negative values for the

bulk g(r) occur only for r0.63 .Bulk MHNC calculations, as well as the

variational perturbation theory map the fluid range of simple fluids

onto (13] rL(f,T)<.4 5, with r(?,T)-0.45 serving as a Lindemann type

* freezing rule. The singularity of the functions (6.2), associated with

negative or zero values of g(z),which limits their range to n,<0.45, may

be more than accidental.Notwithstanding this speculative interpretation,

one should be cautious in applying the bridge functions (6.2) for a

fluid near its bulk freezing point.The overall general features

regarding the application of the MHNC scheme to density profiles are

similar to the bulk case.Accurate simulation data, when compared to MHNG

'ZI



results will provide the ultimate test. for the accuracy of the bridge

functionxs.

%4



VII-Conclusions

In this paperdevoted to the analysis of the density profile

problem as the 'planar' limit of a bulk mixture in which one of the bulk

particles increases in size to become the planar wall,we provided strong

evidence for the universality of the bridge functions for the density

profiles. Although we still have room for improvement of the parametric

representation of the bridge functions, the resulting M-NC theory is

likely to be as accurate as in the bulk case.A program for computing

density profiles by means of the MHNC scheme is currently underway.

An attempt to implement the universality of the bridge functions

for bulk uniform systems to the treatment of nonuniform fluids has

already been made with considerable success (32].From the present

analysis, it seems however that fruitful information, leading to a

* systematic improvement of the theory of nonumiform fluids, may be

obtained by comparing the MHNC results for the density profiles to those

* obtained using the weighted density functional formalism [33].

Final test of the accuracy of this theory will be achieved by

comparison to computer simulations.We hope to perform such a study in

the future.

i



References

I1) YRsnedand N.W.Ashcroft,Phys.Revs. A20,1208,(1979).

2 ) L.Blum.J.Hernando and J.L.Lebowitz, J.Phys.Ghem., 87,2825(1983).

3 ) See,for example the review by L.Blum,"The Electric Double Layer-a

Comprehensive Approach",in Fluid Interfacial Phenomena,Edited by

G.A.Croxton,J.Wiley & sons, New York, 1985.

4 ) See,for example the reviews by J.P.Hansen and M.Baus, Phys. Rep.

59,1 (1980);S.fchimaru, Rev.Mod. Phys. 54, 1017 (1982).

5 ) J.P.Badali, M.L.Rosinberg, D.Levesque and J.J.Weis, J.Phys.G16,2183

(1983)

6 ) M.Hasegawa and M.Watanabe J.Phys.C18,2081 (1985), and references

cited therein.

7 ) J.Goodisman and M.L.Rosinberg,J.Phys.C16,1143 (1983).

8 ) P.Ballone,G.Senatore and M.Tosi, Physics 119A,356 (1983).

9 a) D.Henderson,F.F.Abraham and J.A.Barker, !o1.Phys.31,1291 (1976).

b) J.K.Percus, J.Stat.Phys.15,423 (1976).

10) L.Blum and G.Stell,J.Stat.Phys.l5,439 (1976).

11) D.Henderson and L.Blumn,J.Chem.Phys.69,5441 (1978).

12) Y.Rosenfeld, J.de Physique,Paris),Golloq. 41, C-77 (1980),Phys.

Revs.Lett.44,146 (1980).

13) Y.Rosenfeld,Phys. Revs. A29,2877 (1984).

14) Y.Rosenfeld,J.Stat. Phys. 42,437 (1986)

15) F.Lado, Phys. Lett. 89A,196 (1982).

16) F.Lado,S.M.Foiles and N.W.Ashcroft, Phys. Revs. A28,2374 (1983).

17) Y.Rosenfeld,J.Stat. Phys. 37,215 (1984).



* 18) J.S.Tsai, Ph.D.Dissertation, North Carolina State University, 1980

(unpublished).

19) F.J.Rogers,D.A.Young,H.E.DeWitt and M.Ross,Phys. Revs. A28,2890

(1983)

20) P.Ballone,G.Pastore and M.Tosi,J.Chem.Phys.81,3174 (1984),J.Wiecken

J.Phys.C18,L717 (1985).

21) G.C.Aers and M.W.C.Dharma-Wardana,Phys. Revs. A29,2734(1984),

C.Caccamo,G.Malescio and L.Reatto,J.Chem.Phys.81,4093(1984)

D.J.Gonzalez,M.J.Grimson and M.Silbert, Mol.Phys.54,1047 (1985).

22) M.S.Wertheim, J.Chem.Phys. 65,2377 (1976).

23) S.L.Carnie, D.Y.Chan,D.J.Mitchell and B.W.Ninham,

J.Chem.Phys. 74,1572 (1981).

-' 24) D.Henderson, L.Blum and J.L.Lebowitz,J.Electroanal.Chem.102,315

(1979)

25) H.Totsuji,J.Chem.Phys. 75,871 (1981).

26) J.P.Badiali and M.L.Rosinberg,J.Chem.Phys. 76,3264 (1982).

27) > is expected to be positive only for interactions r (x) which are

strongly attractive near the wall.For repulsive potentials . is

expected to be negative.

28) As shown in ret 14 above, MHNC calculations employing the hard

sphere bridge functions (based on simulations) are essentially

equivalent to using the PY hard sphere functions.

29) N.F.Carnahan and k.E.Starling,J.Chem.Phys. 51,635 (1969).

30) M.J.Gillan, J.Phys.C7,Ll (1974);L.Blum and A.H.Narten,

J.Chem.Phys. 56,5197 (1972),A.H.Narten, L.Blum and R.H.Fowler

J.Chem.Phys. 60,378 (1974);Y.Rosenfeld and N.W.Ashcroft, Phys. Revs.

A20,2162 (1979).

31) Y.Rosenfeld and N.W.Ashcroft, Phys. Revs.A20,2162 (1979).

P- .'- % * *



32) R.M.Neiminen and N.W.Ashcroft, Phys. Revs.A24,560 (19S1)

33) W.A.Curtin and N.W.Ashcioft, Phys. Revs.A32,2909 (1985).

N

*5%

.5
N

'5

S.

.~d.

'1

-p..
.5

'p.
.1'

5'
'p

-p..

I.

'C.
5~**
.d*.

'p.

-'S

-'5

'p.

-I

'~ :.; ' '~ ~ ~ vv. '; 5 ~ V.5 V~N ~K ~ c&&~.~x



Table I :Density; profile sum rule for the OCP (see text, and also

compare with table 2 in ref 5)

MG/MG MHNC/MHNC HNC/MC MSA/MSA HNC/HNC

1 0.81 0.81 0.87 0.44 0.86

10 -1.66 -1.86 -0.81 -1.40 -1.21

20 -4.56 -4.81 -2.75 -3.88 -3.81

30 -7.48 -7.33 -4.70 -7.20

70 -19.28 -19.53 -12.59 -17.33

Figure caption

Figure 1: The bulk bridge function parameter n as a function of

rJ.,l/2 rI+Sr6uJJJ r AIp/ for different potentials.The data is taken from

'p. references (1,13,14]. The Lennard -Jones results include data for both

T>T and T<T,
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